Advances in Dual Integral Equations

, by ;
Advances in Dual Integral Equations by Mandal; B N, 9780849306174
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9780849306174 | 0849306175
  • Cover: Nonspecific Binding
  • Copyright: 12/18/1998

  • Rent

    (Recommended)

    $121.67
     
    Term
    Due
    Price
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping bag.
  • Buy New

    Usually Ships in 3-5 Business Days

    $173.08
  • eBook

    eTextBook from VitalSource Icon

    Available Instantly

    Online: 180 Days

    Downloadable: 180 Days

    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
    $99.00*
The effectiveness of dual integral equations for handling mixed boundary value problems has established them as an important tool for applied mathematicians. Their many applications in mathematical physics have prompted extensive research over the last 25 years, and many researchers have made significant contributions to the methodology of solving and to the applications of dual integral equations. However, until now, much of this work has been available only in the form of research papers scattered throughout different journals.In Advances in Dual Integral Equations, the authors systematically present some of the recent developments in dual integral equations involving various special functions as kernel. They examine dual integral equations with Bessel, Legendre, and trigonometric functions as kernel plus dual integral equations involving inverse Mellin transforms. These can be particularly useful in studying certain mixed boundary value problems involving homogeneous media in continuum mechanics. However, when dealing with problems involving non-homogenous media, the corresponding equations may have different kernels. This application prompts the authors to conclude with a discussion of hybrid dual integral equations-mixed kernels with generalized associated Legendre functions and mixed kernels involving Bessel functions.Researchers in the theory of elasticity, fluid dynamics, and mathematical physics will find Advances in Dual Integral Equations a concise, one-stop resource for recent work addressing special functions as kernel.
Loading Icon

Please wait while the item is added to your bag...
Continue Shopping Button
Checkout Button
Loading Icon
Continue Shopping Button