FREE SHIPPING

on all orders of $59 or more

$4 OFF your purchase of $60 or more!
Use coupon code SATURDAY in checkout.

Applied Economic Forecasting Using Time Series Methods

, by ;
Applied Economic Forecasting Using Time Series Methods by Ghysels, Eric; Marcellino, Massimiliano, 9780190622015
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9780190622015 | 0190622016
  • Cover: Hardcover
  • Copyright: 4/20/2018
  • Rent Textbook

    (Recommended)

    $34.25
     
    Term
    Due
    Price
  • Buy Used Textbook

    In Stock Usually Ships Within 24 Hours.

    $65.17
  • Buy New Textbook

    Usually Ships in 3-5 Business Days

    $92.16
Economic forecasting is a key ingredient of decision making both in the public and in the private sector. Because economic outcomes are the result of a vast, complex, dynamic and stochastic system, forecasting is very difficult and forecast errors are unavoidable.

Because forecast precision and reliability can be enhanced by the use of proper econometric models and methods, this innovative book provides an overview of both theory and applications. Undergraduate and graduate students learning basic and advanced forecasting techniques will be able to build from strong foundations, and researchers in public and private institutions will have access to the most recent tools and insights. Readers will gain from the frequent examples that enhance understanding of how to apply techniques, first by using stylized settings and then by real data applications--focusing on macroeconomic and financial topics.

This is first and foremost a book aimed at applying time series methods to solve real-world forecasting problems. Applied Economic Forecasting using Time Series Methods starts with a brief review of basic regression analysis with a focus on specific regression topics relevant for forecasting, such as model specification errors, dynamic models and their predictive properties as well as forecast evaluation and combination. Several chapters cover univariate time series models, vector autoregressive models, cointegration and error correction models, and Bayesian methods for estimating vector autoregressive models. A collection of special topics chapters study Threshold and Smooth Transition Autoregressive (TAR and STAR) models, Markov switching regime models, state space models and the Kalman filter, mixed frequency data models, nowcasting, forecasting using large datasets and, finally, volatility models. There are plenty of practical applications in the book and both EViews and R code are available online at authors' website.

You might also enjoy...



Please wait while the item is added to your bag...