Biomimetic Approaches for Biomaterials Development
, by Mano, Joao F.- ISBN: 9783527329168 | 3527329161
- Cover: Hardcover
- Copyright: 12/26/2012
Preface XVII
List of Contributors XXI
Part I Examples of Natural and Nature-Inspired Materials 1
1 Biomaterials from Marine-Origin Biopolymers 3
Tiago H. Silva, Ana R.C. Duarte, Joana Moreira-Silva, Jo˜ao F. Mano, and Rui L. Reis
1.1 Taking Inspiration from the Sea 3
1.2 Marine-Origin Biopolymers 6
1.2.1 Chitosan 6
1.2.2 Alginate 8
1.2.3 Carrageenan 9
1.2.4 Collagen 9
1.2.5 Hyaluronic Acid 10
1.2.6 Others 11
1.3 Marine-Based Tissue Engineering Approaches 12
1.3.1 Membranes 12
1.3.2 Hydrogels 13
1.3.3 Tridimensional Porous Structures 15
1.3.4 Particles 17
1.4 Conclusions 18
References 18
2 Hydrogels from Protein Engineering 25
Midori Greenwood-Goodwin and Sarah C. Heilshorn
2.1 Introduction 25
2.2 Principles of Protein Engineering 26
2.2.1 Protein Structure and Folding 26
2.2.2 Design of Protein-Engineered Hydrogels 28
2.2.3 Production of Protein-Engineered Hydrogels 30
2.3 Structural Diversity and Applications of Protein-Engineered Hydrogels 32
2.3.1 Self-Assembled Protein Hydrogels 32
2.3.2 Covalently Cross-Linked Protein Hydrogels 38
2.4 Development of Biomimetic Protein-Engineered Hydrogels for Tissue Engineering Applications 39
2.4.1 Mechanical Properties Mediate Cellular Response 40
2.4.2 Biodegradable Hydrogels for Cell Invasion 41
2.4.3 Diverse Biochemical Cues Regulate Complex Cell Behaviors 43
2.4.3.1 Cell–Extracellular Matrix Binding Domains 43
2.4.3.2 Nanoscale Patterning of Cell–Extracellular Matrix Binding Domains 44
2.4.3.3 Cell–Cell Binding Domains 45
2.4.3.4 Delivery of Soluble Cell Signaling Molecules 46
2.5 Conclusions and Future Perspective 48
References 49
3 Collagen-Based Biomaterials for Regenerative Medicine 55
Christophe Helary and Abhay Pandit
3.1 Introduction 55
3.2 Collagens In Vivo 56
3.2.1 Collagen Structure 56
3.2.2 Collagen Fibrillogenesis 56
3.2.3 Three-Dimensional Networks of Collagen in Connective Tissues 57
3.2.4 Interactions of Cells with Collagen 57
3.3 Collagen In Vitro 59
3.4 Collagen Hydrogels 59
3.4.1 Collagen I Hydrogels 59
3.4.1.1 Classical Hydrogels 59
3.4.1.2 Concentrated Collagen Hydrogels 61
3.4.1.3 Dense Collagen Hydrogels Obtained by Plastic Compression 61
3.4.1.4 Dense Collagen Matrices 61
3.4.2 Cross-Linked Collagen I Hydrogels 62
3.4.2.1 Chemical Cross-Linking 62
3.4.2.2 Enzymatic Cross-Linking 62
3.4.3 Collagen II Hydrogels 63
3.4.4 Aligned Hydrogels and Extruded Fibers 64
3.4.4.1 Aligned Hydrogels 64
3.4.4.2 Extruded Collagen Fibers 65
3.5 Collagen Sponges 65
3.6 Multichannel Collagen Scaffolds 66
3.6.1 Multichannel Collagen Conduits 66
3.6.2 Multi-Channeled Collagen–Calcium Phosphate Scaffolds 66
3.7 What Tissues Do Collagen Biomaterials Mimic? (see Table 3.1) 66
3.7.1 Skin 66
3.7.2 Nerves 68
3.7.3 Tendons 68
3.7.4 Bone 69
3.7.5 Intervertebral Disk 69
3.7.6 Cartilage 70
3.8 Concluding Remarks 70
Acknowledgments 71
References 71
4 Silk-Based Biomaterials 75
S´?lvia Gomes, Isabel B. Leonor, Jo˜ao F. Mano, Rui L. Reis, and David L. Kaplan
4.1 Introduction 75
4.2 Silk Proteins 76
4.2.1 Bombyx mori Silk 76
4.2.2 Spider Silk 77
4.2.3 Recombinant Silk 79
4.3 Mechanical Properties 82
4.4 Biomedical Applications of Silk 84
4.5 Final Remarks 87
References 88
5 Elastin-like Macromolecules 93
Rui R. Costa, Laura Mart´?n, Jo˜ao F. Mano, and Jos´e C. Rodr´?guez-Cabello
5.1 General Introduction 93
5.2 Materials Engineering – an Overview on Synthetic and Natural Biomaterials 94
5.3 Elastin as a Source of Inspiration for Nature-Inspired Polymers 94
5.3.1 Genetic Coding 94
5.3.2 Characteristics of Elastin 95
5.3.3 Elastin Disorders 97
5.3.4 Current Applications of Elastin as Biomaterials 97
5.3.4.1 Skin 97
5.3.4.2 Vascular Constructs 98
5.4 Nature-Inspired Biosynthetic Elastins 99
5.4.1 General Properties of Elastin-like Recombinamers 99
5.4.2 The Principle of Genetic Engineering – a Powerful Tool for Engineering Materials 100
5.4.3 From Genetic Construction to Molecules with Tailored Biofunctionality 102
5.4.4 Biocompatibility of ELRs 103
5.5 ELRs as Advanced Materials for Biomedical Applications 103
5.5.1 Tissue Engineering 104
5.5.2 Drug and Gene Delivery 106
5.5.3 Surface Engineering 108
5.6 Conclusions 110
Acknowledgements 110
References 111
6 Biomimetic Molecular Recognition Elements for Chemical Sensing 117
Justyn Jaworski
6.1 Introduction 117
6.1.1 Overview 117
6.1.2 Biological Chemoreception 118
6.1.3 Host–Guest Interactions 119
6.1.3.1 Lock and Key 119
6.1.3.2 Induced Fit 120
6.1.3.3 Preexisting Equilibrium Model 121
6.1.4 Biomimetic Surfaces for Molecular Recognition 121
6.2 Theory of Molecular Recognition 123
6.2.1 Foundation of Molecular Recognition 123
6.2.2 Noncovalent Interactions 123
6.2.3 Thermodynamics of the Molecular Recognition Event 125
6.2.4 Putting a Figure of Merit on Molecular Recognition 127
6.2.5 Multiple Interactions: Avidity and Cooperativity 128
6.3 Molecularly Imprinted Polymers 129
6.3.1 A Brief History of Molecular Imprinting 129
6.3.2 Strategies for the Formation of Molecularly Imprinted Polymers 129
6.3.3 Polymer Matrix Design 130
6.3.4 Cross-Linking and Polymerization Approaches 131
6.3.5 Template Extraction 132
6.3.6 Limitations and Areas for Improvement 133
6.4 Supramolecular Chemistry 134
6.4.1 Introduction 134
6.4.2 Macrocyclic Effect 134
6.4.3 Chelate Effect 135
6.4.4 Preorganization, Rational Design, and Modeling 135
6.4.5 Templating Effect 136
6.4.6 Effective Supramolecular Receptors for Biomimetic Sensing 137
6.4.6.1 Calixarenes 137
6.4.6.2 Metalloporphyrins 138
6.4.7 Recent Improvement 139
6.5 Biomolecular Materials 140
6.5.1 Introduction 140
6.5.2 Native Biomolecules 141
6.5.2.1 Polypeptides 141
6.5.2.2 Carbohydrates 142
6.5.2.3 Oligonucleotides 143
6.5.3 Engineered Biomolecules 144
6.5.3.1 In vitro Selection of RNA/DNA Aptamers 144
6.5.3.2 Evolutionary Screened Peptides 146
6.5.3.3 Computational and Rational Design of Biomimetic Receptors 150
6.6 Summary and Future of Biomimetic-Sensor-Coating Materials 151
References 152
Part II Surface Aspects 157
7 Biology Lessons for Engineering Surfaces for Controlling Cell–Material Adhesion 159
Ted T. Lee and Andr´es J. Garc´?a
7.1 Introduction 159
7.2 The Extracellular Matrix 159
7.3 Protein Structure 160
7.4 Basics of Protein Adsorption 161
7.5 Kinetics of Protein Adsorption 162
7.6 Cell Communication 164
7.6.1 Intracellular Communication 164
7.6.2 Intercellular Communication 165
7.7 Cell Adhesion Background 166
7.8 Integrins and Adhesive Force Generation Overview 167
7.9 Adhesive Interactions in Cell, and Host Responses to Biomaterials 170
7.10 Model Systems for Controlling Integrin-Mediated Cell Adhesion 170
7.11 Self-Assembling Monolayers (SAMs) 171
7.12 Real-World Materials for Medical Applications 172
7.12.1 Polymer Brush Systems 172
7.12.2 Hydrogels 173
7.13 Bio-Inspired, Adhesive Materials: New Routes to Promote Tissue Repair and Regeneration 174
7.14 Dynamic Biomaterials 176
7.14.1 Nonspecific ‘‘On’’ Switches 176
7.14.1.1 Electrochemical Desorption 176
7.14.1.2 Oxidative Release 177
7.14.2 Photobased Desorption 178
7.14.3 Integrin Specific ‘‘On’’ Switching 178
7.14.3.1 Photoactivation 178
7.14.4 Adhesion ‘‘Off’’ Switching 179
7.14.4.1 Electrochemical Off Switching 179
7.14.5 Reversible Adhesion Switches 181
7.14.5.1 Reversible Photoactive Switching 181
7.14.5.2 Reversible Temperature-Based Switching 182
7.14.6 Conclusions and Future Prospects 184
References 185
8 Fibronectin Fibrillogenesis at the Cell–Material Interface 189
Marco Cantini, Patricia Rico, and Manuel Salmer´on-S´anchez
8.1 Introduction 189
8.2 Cell-Driven Fibronectin Fibrillogenesis 189
8.2.1 Fibronectin Structure 190
8.2.2 Essential Domains for FN Assembly 192
8.2.3 FN Fibrillogenesis and Regulation of Matrix Assembly 194
8.3 Cell-Free Assembly of Fibronectin Fibrils 195
8.4 Material-Driven Fibronectin Fibrillogenesis 202
8.4.1 Physiological Organization of Fibronectin at the Material Interface 203
8.4.2 Biological Activity of the Material-Driven Fibronectin Fibrillogenesis 206
References 210
9 Nanoscale Control of Cell Behavior on Biointerfaces 213
E. Ada Cavalcanti-Adam and Dimitris Missirlis
9.1 Nanoscale Cues in Cell Environment 213
9.2 Biomimetics of Cell Environment Using Interfaces 216
9.2.1 Surface Patterning Techniques at the Nanoscale 216
9.2.1.1 Surface Patterning by Nonconventional Nanolithography 216
9.2.1.2 Block Copolymer Micelle Lithography 217
9.2.2 Variation of Surface Physical Parameters at the Nanoscale 219
9.2.2.1 Surface Nanotopography 220
9.2.2.2 Interligand Spacing 221
9.2.2.3 Ligand Density 222
9.2.2.4 Substrate Mechanical Properties 223
9.2.2.5 Dimensionality 223
9.2.3 Surface Functionalization for Controlled Presentation of ECM Molecules to Cells 224
9.2.3.1 Proteins, Protein Fragments, and Peptides 224
9.2.3.2 Linking Systems 226
9.2.3.3 Modulation of Substrate Background 227
9.3 Cell Responses to Nanostructured Materials 227
9.3.1 Cell Adhesion and Migration 228
9.3.2 Cell–Cell Interactions 230
9.3.3 Cell Membrane Receptor Signaling 231
9.3.4 Applications of Nanostructures in Stem Cell Biology 232
9.4 The Road Ahead 233
References 234
10 Surfaces with Extreme Wettability Ranges for Biomedical Applications 237
Wenlong Song, Nat´alia M. Alves, and Jo˜ao F. Mano
10.1 Superhydrophobic Surfaces in Nature 237
10.2 Theory of Surface Wettability 239
10.2.1 Young’s Model 239
10.2.2 Wenzel’s Model 240
10.2.3 The Cassie–Baxter Model 240
10.2.4 Transition between the Cassie–Baxter and Wenzel Models 240
10.3 Fabrication of Extreme Water-Repellent Surfaces Inspired by Nature 241
10.3.1 Superhydrophobic Surfaces Inspired by the Lotus Leaf 241
10.3.2 Superhydrophobic Surfaces Inspired by the Legs of the Water Strider 243
10.3.3 Superhydrophobic Surfaces Inspired by the Anisotropic Superhydrophobic Surfaces in Nature 244
10.3.4 Other Superhydrophobic Surfaces 245
10.4 Applications of Surfaces with Extreme Wettability Ranges in the Biomedical Field 245
10.4.1 Cell Interactions with Surfaces with Extreme Wettability Ranges 246
10.4.2 Protein Interactions with Surfaces with Extreme Wettability Ranges 249
10.4.3 Blood Interactions with Surfaces with Extreme Wettability Ranges 251
10.4.4 High-Throughput Chips Based on Surfaces with Extreme Wettability Ranges 252
10.4.5 Substrates for Preparing Hydrogel and Polymeric Particles 254
10.5 Conclusions 254
References 255
11 Bio-Inspired Reversible Adhesives for Dry and Wet Conditions 259
Ar´anzazu del Campo and Juan Pedro Fern´andez-Bl´azquez
11.1 Introduction 259
11.2 Gecko-Like Dry Adhesives 260
11.2.1 Fibrils with 3D Contact Shapes 262
11.2.2 Tilted Structures 263
11.2.3 Hierarchical Structures 265
11.2.4 Responsive Adhesion Patterns 265
11.3 Bioinspired Adhesives for Wet Conditions 268
11.4 The Future of Bio-Inspired Reversible Adhesives 270
Acknowledgments 270
References 270
12 Lessons from Sea Organisms to Produce New Biomedical Adhesives 273
Elise Hennebert, Pierre Becker, and Patrick Flammang
12.1 Introduction 273
12.2 Composition of Natural Adhesives 274
12.2.1 Mussels 274
12.2.2 Tube Worms 278
12.2.3 Barnacles 279
12.2.4 Brown Algae 280
12.3 Recombinant Adhesive Proteins 281
12.3.1 Production 281
12.3.2 Applications 283
12.4 Production of Bio-Inspired Synthetic Adhesive Polymers 284
12.4.1 Adhesives Based on Synthetic Peptides 285
12.4.2 Adhesives Based on Polysaccharides 285
12.4.3 Adhesives Based on Other Polymers 286
12.5 Perspectives 288
Acknowledgments 288
References 288
Part III Hard and Mineralized Systems 293
13 Interfacial Forces and Interfaces in Hard Biomaterial Mechanics 295
Devendra K. Dubey and Vikas Tomar
13.1 Introduction 295
13.2 Hard Biological Materials 298
13.2.1 Role of Interfaces in Hard Biomaterial Mechanics 299
13.2.2 Modeling of TC–HAP and Generic Polymer–Ceramic-Type Nanocomposites at Fundamental Length Scales 301
13.2.2.1 Analytical Modeling 302
13.2.2.2 Atomistic Modeling 304
13.3 Bioengineering and Biomimetics 306
13.4 Summary 308
References 309
14 Nacre-Inspired Biomaterials 313
Gisela M. Luz and Jo˜ao F. Mano
14.1 Introduction 313
14.2 Structure of Nacre 316
14.3 Why Is Nacre So Strong? 318
14.4 Strategies to Produce Nacre-Inspired Biomaterials 320
14.4.1 Covalent Self-Assembly or Bottom-Up Approach 320
14.4.2 Electrophoretic Deposition 322
14.4.3 Layer-by-Layer and Spin-Coating Methodologies 323
14.4.4 Template Inhibition 325
14.4.5 Freeze-Casting 326
14.4.6 Other Methodologies 326
14.5 Conclusions 328
Acknowledgements 329
References 329
15 Surfaces Inducing Biomineralization 333
Nat´alia M. Alves, Isabel B. Leonor, Helena S. Azevedo, Rui. L. Reis, and Jo˜ao. F. Mano
15.1 Mineralized Structures in Nature: the Example of Bone 333
15.2 Learning from Nature to the Research Laboratory 336
15.2.1 Bioactive Ceramics and Their Bone-Bonding Mechanism 337
15.2.2 Is a Functional Group Enough to Render Biomaterials Self-Mineralizable? 338
15.2.2.1 How the Surface Charge of Functional Group Can Be Correlated to Apatite Formation? 338
15.2.2.2 Designing a Properly Functionalized Surface 339
15.3 Smart Mineralizing Surfaces 343
15.4 In Situ Self-Assembly on Implant Surfaces to Direct Mineralization 345
15.5 Conclusions 348
Acknowledgments 348
References 348
16 Bioactive Nanocomposites Containing Silicate Phases for Bone Replacement and Regeneration 353
Melek Erol, Jasmin Hum, and Aldo R. Boccaccini
16.1 Introduction 353
16.2 Nanostructure and Nanofeatures of the Bone 354
16.2.1 The Structure of Bone as a Nanocomposite 354
16.2.2 Cell Behavior at the Nanoscale 356
16.3 Nanocomposites-Containing Silicate Nanophases 356
16.3.1 Nanoscale Bioactive Glasses 356
16.3.1.1 Synthetic Polymer/Nanoparticulate Bioactive Glass Composites 357
16.3.1.2 Natural Polymer/Bioactive Glass Nanocomposites 360
16.3.2 Nanoscaled Silica 363
16.3.2.1 Composites Containing Silica Nanoparticles 364
16.3.3 Nanoclays 365
16.3.3.1 Composites Containing Clay Nanoparticles 366
16.4 Final Considerations 372
References 375
Part IV Systems for the Delivery of Bioactive Agents 381
17 Biomimetic Nanostructured Apatitic Matrices for Drug Delivery 383
Norberto Roveri and Michele Iafisco
17.1 Introduction 383
17.2 Biomimetic Apatite Nanocrystals 384
17.2.1 Properties 384
17.2.2 Synthesis 386
17.3 Biomedical Applications of Biomimetic Nanostructured Apatites 390
17.4 Biomimetic Nanostructured Apatite as Drug Delivery System 394
17.4.1 Adsorption and Release of Drugs 397
17.5 Adsorption and Release of Proteins 402
17.5.1 Adsorption and Release of Bisphosphonates 406
17.6 Conclusions and Perspectives 409
Acknowledgments 411
References 411
18 Nanostructures and Nanostructured Networks for Smart Drug Delivery 417
Carmen Alvarez-Lorenzo, Ana M. Puga, and Angel Concheiro
18.1 Introduction 417
18.2 Stimuli-Sensitive Materials 419
18.2.1 pH 419
18.2.2 Glutathione 420
18.2.3 Molecule-Responsive and Imprinted Systems 420
18.2.4 Temperature 422
18.2.5 Light 423
18.2.6 Electrical Field 425
18.2.7 Magnetic Field 426
18.2.8 Ultrasounds 427
18.2.9 Autonomous Responsiveness 428
18.3 Stimuli-Responsive Nanostructures and Nanostructured Networks 428
18.3.1 Self-Assembled Polymers: Micelles and Polymersomes 429
18.3.2 Treelike Polymers: Dendrimers 433
18.3.3 Layer-by-Layer Assembly of Preformed Polymers 436
18.3.4 Polymeric Particles from Preformed Polymers 438
18.3.5 Polymeric Particles from Monomers 439
18.3.6 Chemically Cross-Linked Hydrogels 444
18.3.7 Grafting onto Medical Devices 447
18.4 Concluding Remarks 449
Acknowledgments 449
References 450
19 Progress in Dendrimer-Based Nanocarriers 459
Joaquim M. Oliveira, Jo˜ao F. Mano, and Rui L. Reis
19.1 Fundamentals 459
19.2 Applications of Dendrimer-Based Polymers 460
19.2.1 Biomimetic/Bioinspired Materials 460
19.2.2 Drug Delivery Systems 461
19.2.3 Gene Delivery Systems 463
19.2.4 Biosensors 465
19.2.5 Theranostics 466
19.3 Final Remarks 467
References 467
Part V Lessons from Nature in Regenerative Medicine 471
20 Tissue Analogs by the Assembly of Engineered Hydrogel Blocks 473
Shilpa Sant, Daniela F. Coutinho, Nasser Sadr, Rui L. Reis, and Ali Khademhosseini
20.1 Introduction 473
20.2 Tissue/Organ Heterogeneity In Vivo 474
20.3 Hydrogel Engineering for Obtaining Biologically Inspired Structures 477
20.3.1 Structural Cues 477
20.3.2 Mechanical Cues 478
20.3.3 Biochemical Cues 480
20.3.4 Cell–Cell Contact 482
20.3.5 Combination of Multiple Cues 483
20.4 Assembly of Engineered Hydrogel Blocks 485
20.5 Conclusions 488
Acknowledgments 489
References 489
21 Injectable In-Situ-Forming Scaffolds for Tissue Engineering 495
Da Yeon Kim, Jae Ho Kim, Byoung Hyun Min, and Moon Suk Kim
21.1 Introduction 495
21.2 Injectable In-Situ-Forming Scaffolds Formed by Electrostatic Interactions 496
21.3 Injectable In-Situ-Forming Scaffolds Formed by Hydrophobic Interactions 497
21.4 Immune Response of Injectable In-Situ-Forming Scaffolds 500
21.5 Injectable In-Situ-Forming Scaffolds for Preclinical Regenerative Medicine 500
21.6 Conclusions and Outlook 501
References 502
22 Biomimetic Hydrogels for Regenerative Medicine 503
Iris Mironi-Harpaz, Olga Kossover, Eran Ivanir, and Dror Seliktar
22.1 Introduction 503
22.2 Natural and Synthetic Hydrogels 503
22.3 Hydrogel Properties 505
22.4 Engineering Strategies for Hydrogel Development 506
22.5 Applications in Biomedicine 508
References 511
23 Bio-inspired 3D Environments for Cartilage Engineering 515
Jos´e Luis G´omez Ribelles
23.1 Articular Cartilage Histology 515
23.2 Spontaneous and Forced Regeneration in Articular Cartilage 517
23.3 What Can Tissue Engineering Do for Articular Cartilage Regeneration? 517
23.4 Cell Sources for Cartilage Engineering 519
23.4.1 Bone Marrow Mesenchymal Cells Reaching the Cartilage Defect from Subchondral Bone 519
23.4.2 Autologous Mesenchymal Stem Cells from Different Sources 520
23.4.3 Mature Autologous Chondrocytes 521
23.5 The Role and Requirements of the Scaffolding Material 524
23.5.1 Gels Encapsulating Cells as Vehicles for Cell Transplant 524
23.5.2 Macroporous Scaffolds: Pore Architecture 524
23.5.3 Cell Adhesion Properties of the Scaffold Surfaces 525
23.5.4 Mechanical Properties 525
23.5.5 Can Scaffold Architecture Direct Tissue Organization? 526
23.5.6 Scaffold Biodegradation Rate 527
23.6 Growth Factor Delivery In Vivo 528
23.7 Conclusions 528
Acknowledgment 529
References 529
24 Soft Constructs for Skin Tissue Engineering 537
Simone S. Silva, Jo˜ao F. Mano, and Rui L. Reis
24.1 Introduction 537
24.2 Structure of Skin 537
24.2.1 Wound Healing 538
24.3 Current Biomaterials in Wound Healing 539
24.3.1 Alginate 539
24.3.2 Cellulose 540
24.3.3 Chitin/Chitosan 541
24.3.4 Hyaluronic Acid 543
24.3.5 Collagen and Other Proteins 544
24.3.6 Synthetic Polymers 545
24.4 Wound Dressings and Their Properties 545
24.5 Biomimetic Approaches in Skin Tissue Engineering 546
24.5.1 Commercially Available Skin Products 549
24.6 Final Remarks 549
Acknowledgments 552
List of Abbreviations 552
References 553
Index 559
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.