The Classical and Quantum 6J-Symbols

, by ; ;
The Classical and Quantum 6J-Symbols by Carter, J. Scott; Flath, Daniel E.; Saito, Masahico, 9780691027302
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9780691027302 | 0691027307
  • Cover: Paperback
  • Copyright: 12/11/1995

  • Rent

    (Recommended)

    $45.38
     
    Term
    Due
    Price
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.
  • Buy New

    In Stock Usually Ships in 24 Hours

    $68.90
  • eBook

    eTextBook from VitalSource Icon

    Available Instantly

    Online: 1825 Days

    Downloadable: Lifetime Access

    $88.88

Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory ofsl(2),both classical and quantum. Covering representations ofU(sl(2)),quantumsl(2),the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals. The classic subject of representations ofU(sl(2))is equivalent to the physicists' theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb algebra to organize computations that have posed difficulties in earlier treatments of the subject. The emphasis is on the 6j-symbols and the identities among them, especially the Biedenharn-Elliott and orthogonality identities. The chapter on the quantum groupU q (sl(2))develops the representation theory in strict analogy with the classical case, wherein the authors interpret the Kauffman bracket and the associated quantum spin-networks algebraically. The authors then explore instances where the quantum parameterqis a root of unity, which calls for a representation theory of a decidedly different flavor. The theory in this case is developed, modulo the trace zero representations, in order to arrive at a finite theory suitable for topological applications. The Turaev-Viro invariant for 3-manifolds is defined combinatorially using the theory developed in the preceding chapters. Since the background from the classical, quantum, and quantum root of unity cases has been explained thoroughly, the definition of this invariant is completely contained and justified within the text.
Loading Icon

Please wait while the item is added to your bag...
Continue Shopping Button
Checkout Button
Loading Icon
Continue Shopping Button