Envelopes and Sharp Embeddings of Function Spaces

, by
Envelopes and Sharp Embeddings of Function Spaces by Dorothee D. Haroske, 9781584887515
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9781584887515 | 1584887516
  • Cover: Nonspecific Binding
  • Copyright: 9/22/2006

  • Rent

    (Recommended)

    $139.44
     
    Term
    Due
    Price
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping bag.
  • Buy New

    Usually Ships in 3-5 Business Days

    $187.91
  • eBook

    eTextBook from VitalSource Icon

    Available Instantly

    Online: 180 Days

    Downloadable: 180 Days

    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
    $56.10*
Until now, no book has systematically presented the recently developed concept of envelopes in function spaces. Envelopes are relatively simple tools for the study of classical and more complicated spaces, such as Besov and Triebel-Lizorkin types, in limiting situations. This theory originates from the classical result of the Sobolev embedding theorem, ubiquitous in all areas of functional analysis. Self-contained and accessible, Envelopes and Sharp Embeddings of Function Spacesprovides the first detailed account of the new theory of growth and continuity envelopes in function spaces. The book is well structured into two parts, first providing a comprehensive introduction and then examining more advanced topics. Some of the classical function spaces discussed in the first part include Lebesgue, Lorentz, Lipschitz, and Sobolev. The author defines growth and continuity envelopes and examines their properties. In Part II, the book explores the results for function spaces of Besov and Triebel-Lizorkin types. The author then presents several applications of the results, including Hardy-type inequalities, asymptotic estimates for entropy, and approximation numbers of compact embeddings. As one of the key researchers in this progressing field, the author offers a coherent presentation of the recent developments in function spaces, providing valuable information for graduate students and researchers in functional analysis.
Loading Icon

Please wait while the item is added to your bag...
Continue Shopping Button
Checkout Button
Loading Icon
Continue Shopping Button