Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques A Guide to Data Science for Fraud Detection

, by ; ;
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques A Guide to Data Science for Fraud Detection by Baesens, Bart; Van Vlasselaer, Veronique; Verbeke, Wouter, 9781119133124
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9781119133124 | 1119133122
  • Cover: Hardcover
  • Copyright: 8/17/2015

  • Rent

    (Recommended)

    $24.44
     
    Term
    Due
    Price
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.
  • Buy New

    In Stock Usually Ships in 24 Hours.

    $47.97
  • eBook

    eTextBook from VitalSource Icon

    Available Instantly

    Online: 1825 Days

    Downloadable: Lifetime Access

    $48.00

Detect fraud earlier to mitigate loss and prevent cascading damage

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention.

It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak.

  • Examine fraud patterns in historical data
  • Utilize labeled, unlabeled, and networked data
  • Detect fraud before the damage cascades
  • Reduce losses, increase recovery, and tighten security

The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

You might also enjoy...

Loading Icon

Please wait while the item is added to your bag...
Continue Shopping Button
Checkout Button
Loading Icon
Continue Shopping Button