Machine Learning for Business Analytics Concepts, Techniques and Applications in RapidMiner
, by Shmueli, Galit; Bruce, Peter C.; Deokar, Amit V.; Patel, Nitin R.- ISBN: 9781119828792 | 1119828791
- Cover: Hardcover
- Copyright: 3/21/2023
Machine learning—also known as data mining or data analytics—is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.
Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.
This is the seventh edition of Machine Learning for Business Analytics, and the first using RapidMiner software. This edition also includes:
- A new co-author, Amit Deokar, who brings experience teaching business analytics courses using RapidMiner
- Integrated use of RapidMiner, an open-source machine learning platform that has become commercially popular in recent years
- An expanded chapter focused on discussion of deep learning techniques
- A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
- A new chapter on responsible data science
- Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
- A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
- End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
- A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions
This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.
Galit Shmueli, PhD, is Distinguished Professor and Institute Director at National Tsing Hua University’s Institute of Service Science. She has designed and instructed business analytics courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan.
Peter C. Bruce, is Founder of the Institute for Statistics Education at Statistics.com, and Chief Learning Officer at Elder Research, Inc.
Amit V. Deokar, PhD, is Chair of the Operations & Information Systems Department and an Associate Professor of Management Information Systems at the Manning School of Business at University of Massachusetts Lowell. Since 2006, he has developed and taught courses in business analytics, with expertise in using the RapidMiner platform. He is an Association for Information Systems Distinguished Member Cum Laude.
Nitin R. Patel, PhD, is cofounder and lead researcher at Cytel Inc. He was also a co-founder of Tata Consultancy Services. A Fellow of the American Statistical Association, Dr. Patel has served as a visiting professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years.
Foreword by Ravi Bapna xxi
Preface to the RapidMiner Edition xxiii
Acknowledgments xxvii
PART I PRELIMINARIES
CHAPTER 1 Introduction 3
1.1 What Is Business Analytics? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What Is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Machine Learning, AI, and Related Terms . . . . . . . . . . . . . . . . . . . . 5
Statistical Modeling vs. Machine Learning . . . . . . . . . . . . . . . . . . . . 6
1.4 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Why Are There So Many Different Methods? . . . . . . . . . . . . . . . . . . . 9
1.7 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Road Maps to This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Order of Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Using RapidMiner Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Importing and Loading Data in RapidMiner . . . . . . . . . . . . . . . . . . . 16
RapidMiner Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CHAPTER 2 Overview of the Machine Learning Process 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Core Ideas in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 20
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Association Rules and Recommendation Systems . . . . . . . . . . . . . . . . . 20
Predictive Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Data Reduction and Dimension Reduction . . . . . . . . . . . . . . . . . . . . 21
Data Exploration and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 21
Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . 22
2.3 The Steps in a Machine Learning Project . . . . . . . . . . . . . . . . . . . . . 23
vii
viii CONTENTS
2.4 Preliminary Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Organization of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Sampling from a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Oversampling Rare Events in Classification Tasks . . . . . . . . . . . . . . . . . 26
Preprocessing and Cleaning the Data . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Predictive Power and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 32
Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Creation and Use of Data Partitions . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Building a Predictive Model with RapidMiner . . . . . . . . . . . . . . . . . . . 37
Predicting Home Values in the West Roxbury Neighborhood . . . . . . . . . . . 39
Modeling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Using RapidMiner for Machine Learning . . . . . . . . . . . . . . . . . . . . . 45
2.8 Automating Machine Learning Solutions . . . . . . . . . . . . . . . . . . . . . 47
Predicting Power Generator Failure . . . . . . . . . . . . . . . . . . . . . . . . 48
Uber’s Michelangelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Ethical Practice in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 52
Machine Learning Software Tools: The State of the Market by Herb Edelstein . . . 53
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
PART II DATA EXPLORATION AND DIMENSION REDUCTION
CHAPTER 3 Data Visualization 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Example 1: Boston Housing Data . . . . . . . . . . . . . . . . . . . . . . . . 65
Example 2: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Basic Charts: Bar Charts, Line Charts, and Scatter Plots . . . . . . . . . . . . . 66
Distribution Plots: Boxplots and Histograms . . . . . . . . . . . . . . . . . . . 69
Heatmaps: Visualizing Correlations and Missing Values . . . . . . . . . . . . . . 72
3.4 Multidimensional Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Adding Attributes: Color, Size, Shape, Multiple Panels, and Animation . . . . . . 75
Manipulations: Rescaling, Aggregation and Hierarchies, Zooming, and Filtering . . 78
Reference: Trend Lines and Labels . . . . . . . . . . . . . . . . . . . . . . . . 81
Scaling Up to Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Multivariate Plot: Parallel Coordinates Plot . . . . . . . . . . . . . . . . . . . . 83
Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5 Specialized Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Visualizing Networked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Visualizing Hierarchical Data: Treemaps . . . . . . . . . . . . . . . . . . . . . 89
Visualizing Geographical Data: Map Charts . . . . . . . . . . . . . . . . . . . . 90
3.6 Summary: Major Visualizations and Operations, by Machine Learning Goal . . . . 92
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
CONTENTS ix
CHAPTER 4 Dimension Reduction 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Example 1: House Prices in Boston . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Aggregation and Pivot Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Reducing the Number of Categories in Categorical Attributes . . . . . . . . . . . 105
4.7 Converting a Categorical Attribute to a Numerical Attribute . . . . . . . . . . . 107
4.8 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Example 2: Breakfast Cereals . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Normalizing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Using Principal Components for Classification and Prediction . . . . . . . . . . . 117
4.9 Dimension Reduction Using Regression Models . . . . . . . . . . . . . . . . . . 117
4.10 Dimension Reduction Using Classification and Regression Trees . . . . . . . . . . 119
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
PART III PERFORMANCE EVALUATION
CHAPTER 5 Evaluating Predictive Performance 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Evaluating Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . . 126
Naive Benchmark: The Average . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Prediction Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Comparing Training and Holdout Performance . . . . . . . . . . . . . . . . . . 130
Lift Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Judging Classifier Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Benchmark: The Naive Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Class Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
The Confusion (Classification) Matrix . . . . . . . . . . . . . . . . . . . . . . . 133
Using the Holdout Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Propensities and Threshold for Classification . . . . . . . . . . . . . . . . . . . 136
Performance in Case of Unequal Importance of Classes . . . . . . . . . . . . . . 139
Asymmetric Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . 143
Generalization to More Than Two Classes . . . . . . . . . . . . . . . . . . . . . 146
5.4 Judging Ranking Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Lift Charts for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Decile Lift Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Beyond Two Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Lift Charts Incorporating Costs and Benefits . . . . . . . . . . . . . . . . . . . 150
Lift as a Function of Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 150
x CONTENTS
5.5 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Creating an Over-sampled Validation (or Holdout) Set . . . . . . . . . . . . . . 154
Evaluating Model Performance Using a Non-oversampled Holdout Set . . . . . . . 155
Evaluating Model Performance if Only Oversampled Holdout Set Exists . . . . . . 155
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
PART IV PREDICTION AND CLASSIFICATION METHODS
CHAPTER 6 Multiple Linear Regression 163
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Explanatory vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 164
6.3 Estimating the Regression Equation and Prediction . . . . . . . . . . . . . . . . 166
Example: Predicting the Price of Used Toyota Corolla Cars . . . . . . . . . . . . 167
6.4 Variable Selection in Linear Regression . . . . . . . . . . . . . . . . . . . . . 171
Reducing the Number of Predictors . . . . . . . . . . . . . . . . . . . . . . . 171
How to Reduce the Number of Predictors . . . . . . . . . . . . . . . . . . . . . 174
Regularization (Shrinkage Models) . . . . . . . . . . . . . . . . . . . . . . . . 180
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
CHAPTER 7 k-Nearest Neighbors (k-NN) 189
7.1 The k-NN Classifier (Categorical Label) . . . . . . . . . . . . . . . . . . . . . . 189
Determining Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Example: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Choosing Parameter k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Setting the Threshold Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Weighted k-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
k-NN with More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 199
Working with Categorical Attributes . . . . . . . . . . . . . . . . . . . . . . . 199
7.2 k-NN for a Numerical Label . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.3 Advantages and Shortcomings of k-NN Algorithms . . . . . . . . . . . . . . . . 202
Appendix: Computing Distances Between Records in RapidMiner . . . . . . . . . . . . 204
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
CHAPTER 8 The Naive Bayes Classifier 209
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Threshold Probability Method . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Example 1: Predicting Fraudulent Financial Reporting . . . . . . . . . . . . . . 210
8.2 Applying the Full (Exact) Bayesian Classifier . . . . . . . . . . . . . . . . . . . 211
Using the “Assign to the Most Probable Class” Method . . . . . . . . . . . . . . 212
Using the Threshold Probability Method . . . . . . . . . . . . . . . . . . . . . 212
Practical Difficulty with the Complete (Exact) Bayes Procedure . . . . . . . . . . 212
CONTENTS xi
8.3 Solution: Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
The Naive Bayes Assumption of Conditional Independence . . . . . . . . . . . . 214
Using the Threshold Probability Method . . . . . . . . . . . . . . . . . . . . . 214
Example 2: Predicting Fraudulent Financial Reports, Two Predictors . . . . . . . 215
Example 3: Predicting Delayed Flights . . . . . . . . . . . . . . . . . . . . . . 216
Working with Continuous Attributes . . . . . . . . . . . . . . . . . . . . . . . 222
8.4 Advantages and Shortcomings of the Naive Bayes Classifier . . . . . . . . . . . 223
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
CHAPTER 9 Classification and Regression Trees 229
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Classifying a New Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.2 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Measures of Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.3 Evaluating the Performance of a Classification Tree . . . . . . . . . . . . . . . . 240
Example 2: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . 240
Sensitivity Analysis Using Cross Validation . . . . . . . . . . . . . . . . . . . . 243
9.4 Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Stopping Tree Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Stopping Tree Growth: Grid Search for Parameter Tuning . . . . . . . . . . . . . 247
Stopping Tree Growth: CHAID . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Stopping Tree Growth: CHAID . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Pruning the Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Pruning the Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
9.5 Classification Rules from Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.6 Classification Trees for More Than Two Classes . . . . . . . . . . . . . . . . . . 256
9.7 Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Measuring Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Evaluating Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.8 Improving Prediction: Random Forests and Boosted Trees . . . . . . . . . . . . 259
Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.9 Advantages and Weaknesses of a Tree . . . . . . . . . . . . . . . . . . . . . . 261
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
CHAPTER 10 Logistic Regression 269
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.2 The Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.3 Example: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . . 272
Model with a Single Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . 273
xii CONTENTS
Estimating the Logistic Model from Data: Computing Parameter Estimates . . . . 275
Interpreting Results in Terms of Odds (for a Profiling Goal) . . . . . . . . . . . . 278
Evaluating Classification Performance . . . . . . . . . . . . . . . . . . . . . . 280
Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.4 Logistic Regression for Multi-class Classification . . . . . . . . . . . . . . . . . 283
Example: Accidents Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
10.5 Example of Complete Analysis: Predicting Delayed Flights . . . . . . . . . . . . 286
Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Appendix: Logistic Regression for Ordinal Classes . . . . . . . . . . . . . . . . . . . . 299
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
CHAPTER 11 Neural Networks 305
RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
11.2 Concept and Structure of a Neural Network . . . . . . . . . . . . . . . . . . . . 306
11.3 Fitting a Network to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Example 1: Tiny Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Computing Output of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Training the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Example 2: Classifying Accident Severity . . . . . . . . . . . . . . . . . . . . . 316
Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Using the Output for Prediction and Classification . . . . . . . . . . . . . . . . 320
11.4 Required User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
11.5 Exploring the Relationship Between Predictors and Target Attribute . . . . . . . 322
11.6 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . . . . . . . . 324
Local Feature Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
A Hierarchy of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
The Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Example: Classification of Fashion Images . . . . . . . . . . . . . . . . . . . . 327
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
11.7 Advantages and Weaknesses of Neural Networks . . . . . . . . . . . . . . . . . 334
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
CHAPTER 12 Discriminant Analysis 337
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Example 2: Personal Loan Acceptance . . . . . . . . . . . . . . . . . . . . . . 338
CONTENTS xiii
12.2 Distance of a Record from a Class . . . . . . . . . . . . . . . . . . . . . . . . 340
12.3 Fisher’s Linear Classification Functions . . . . . . . . . . . . . . . . . . . . . . 341
12.4 Classification Performance of Discriminant Analysis . . . . . . . . . . . . . . . 346
12.5 Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
12.6 Unequal Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . . 348
12.7 Classifying More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 349
Example 3: Medical Dispatch to Accident Scenes . . . . . . . . . . . . . . . . . 349
12.8 Advantages and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
CHAPTER 13 Generating, Comparing, and Combining Multiple
Models
359
13.1 Automated Machine Learning (AutoML) . . . . . . . . . . . . . . . . . . . . . 359
AutoML: Explore and Clean Data . . . . . . . . . . . . . . . . . . . . . . . . . 360
AutoML: Determine Machine Learning Task . . . . . . . . . . . . . . . . . . . . 361
AutoML: Choose Attributes and Machine Learning Methods . . . . . . . . . . . . 361
AutoML: Evaluate Model Performance . . . . . . . . . . . . . . . . . . . . . . 363
AutoML: Model Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Advantages and Weaknesses of Automated Machine Learning . . . . . . . . . . . 365
13.2 Explaining Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Explaining Model Predictions: LIME . . . . . . . . . . . . . . . . . . . . . . . 368
Counterfactual Explanations of Predictions: What-If Scenarios . . . . . . . . . . 369
13.3 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Why Ensembles Can Improve Predictive Power . . . . . . . . . . . . . . . . . . 373
Simple Averaging or Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Bagging and Boosting in RapidMiner . . . . . . . . . . . . . . . . . . . . . . . 378
Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Advantages and Weaknesses of Ensembles . . . . . . . . . . . . . . . . . . . . 381
13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
PART V INTERVENTION AND USER FEEDBACK
CHAPTER 14 Interventions: Experiments, Uplift Models, and
Reinforcement Learning
387
14.1 A/B Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Example: Testing a New Feature in a Photo Sharing App . . . . . . . . . . . . . 389
The Statistical Test for Comparing Two Groups (T-Test) . . . . . . . . . . . . . . 389
Multiple Treatment Groups: A/B/n Tests . . . . . . . . . . . . . . . . . . . . . 392
Multiple A/B Tests and the Danger of Multiple Testing . . . . . . . . . . . . . . 392
14.2 Uplift (Persuasion) Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Gathering the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
A Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
xiv CONTENTS
Modeling Individual Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Computing Uplift with RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . 398
Using the Results of an Uplift Model . . . . . . . . . . . . . . . . . . . . . . . 398
14.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Explore-Exploit: Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . 400
Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . . . . . . . 402
14.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
PART VI MINING RELATIONSHIPS AMONG RECORDS
CHAPTER 15 Association Rules and Collaborative Filtering 409
15.1 Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Discovering Association Rules in Transaction Databases . . . . . . . . . . . . . 410
Example 1: Synthetic Data on Purchases of Phone Faceplates . . . . . . . . . . 410
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Generating Candidate Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
FP-Growth Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Selecting Strong Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
The Process of Rule Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Rules and Chance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Example 2: Rules for Similar Book Purchases . . . . . . . . . . . . . . . . . . . 424
15.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Data Type and Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Example 3: Netflix Prize Contest . . . . . . . . . . . . . . . . . . . . . . . . . 427
User-Based Collaborative Filtering: “People Like You” . . . . . . . . . . . . . . 428
Item-Based Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . 430
Evaluating Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Example 4: Predicting Movie Ratings with MovieLens Data . . . . . . . . . . . . 432
Advantages and Weaknesses of Collaborative Filtering . . . . . . . . . . . . . . 434
Collaborative Filtering vs. Association Rules . . . . . . . . . . . . . . . . . . . 437
15.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
CHAPTER 16 Cluster Analysis 445
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Example: Public Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
16.2 Measuring Distance Between Two Records . . . . . . . . . . . . . . . . . . . . 449
Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Normalizing Numerical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Other Distance Measures for Numerical Data . . . . . . . . . . . . . . . . . . . 451
Distance Measures for Categorical Data . . . . . . . . . . . . . . . . . . . . . . 454
Distance Measures for Mixed Data . . . . . . . . . . . . . . . . . . . . . . . . 454
16.3 Measuring Distance Between Two Clusters . . . . . . . . . . . . . . . . . . . . 455
Minimum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
CONTENTS xv
Maximum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Average Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Centroid Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
16.4 Hierarchical (Agglomerative) Clustering . . . . . . . . . . . . . . . . . . . . . 457
Single Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Complete Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Average Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Centroid Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Ward’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Dendrograms: Displaying Clustering Process and Results . . . . . . . . . . . . . 460
Validating Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Limitations of Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 464
16.5 Non-Hierarchical Clustering: The k-Means Algorithm . . . . . . . . . . . . . . . 466
Choosing the Number of Clusters (k) . . . . . . . . . . . . . . . . . . . . . . . 467
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
PART VII FORECASTING TIME SERIES
CHAPTER 17 Handling Time Series 479
RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
17.2 Descriptive vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 481
17.3 Popular Forecasting Methods in Business . . . . . . . . . . . . . . . . . . . . . 481
Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
17.4 Time Series Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Example: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . . 483
17.5 Data Partitioning and Performance Evaluation . . . . . . . . . . . . . . . . . . 486
Benchmark Performance: Naive Forecasts . . . . . . . . . . . . . . . . . . . . . 489
Generating Future Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
CHAPTER 18 Regression-Based Forecasting 497
RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
18.1 A Model with Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Linear Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Exponential Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Polynomial Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
18.2 A Model with Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Additive vs. Multiplicative Seasonality . . . . . . . . . . . . . . . . . . . . . . 507
18.3 A Model with Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . 508
18.4 Autocorrelation and ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . 509
Computing Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Improving Forecasts by Integrating Autocorrelation Information . . . . . . . . . 514
Evaluating Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
xvi CONTENTS
CHAPTER 19 Smoothing and Deep Learning Methods for
Forecasting
533
RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
19.1 Smoothing Methods: Introduction . . . . . . . . . . . . . . . . . . . . . . . . 534
19.2 Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Centered Moving Average for Visualization . . . . . . . . . . . . . . . . . . . . 534
Trailing Moving Average for Forecasting . . . . . . . . . . . . . . . . . . . . . 535
Choosing Window Width (w) . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
19.3 Simple Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Choosing Smoothing Parameter α . . . . . . . . . . . . . . . . . . . . . . . . 542
Relation Between Moving Average and Simple Exponential Smoothing . . . . . . 543
19.4 Advanced Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 545
Series with a Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Series with a Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . 546
Series with Seasonality (No Trend) . . . . . . . . . . . . . . . . . . . . . . . . 547
19.5 Deep Learning for Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
PART VIII DATA ANALYTICS
CHAPTER 20 Social Network Analytics 563
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
20.2 Directed vs. Undirected Networks . . . . . . . . . . . . . . . . . . . . . . . . 564
20.3 Visualizing and Analyzing Networks . . . . . . . . . . . . . . . . . . . . . . . 567
Plot Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Edge List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
Using Network Data in Classification and Prediction . . . . . . . . . . . . . . . 571
20.4 Social Data Metrics and Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 571
Node-Level Centrality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Egocentric Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Network Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
20.5 Using Network Metrics in Prediction and Classification . . . . . . . . . . . . . . 577
Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Entity Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
20.6 Collecting Social Network Data with RapidMiner . . . . . . . . . . . . . . . . . 584
20.7 Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 584
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
CHAPTER 21 Text Mining 589
RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
21.2 The Tabular Representation of Text: Term–Document Matrix and “Bag-of-Words’’ . 590
CONTENTS xvii
21.3 Bag-of-Words vs. Meaning Extraction at Document Level . . . . . . . . . . . . . 592
21.4 Preprocessing the Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Text Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Presence/Absence vs. Frequency (Occurrences) . . . . . . . . . . . . . . . . . . 597
Term Frequency–Inverse Document Frequency (TF-IDF) . . . . . . . . . . . . . . 598
From Terms to Concepts: Latent Semantic Indexing . . . . . . . . . . . . . . . . 600
Extracting Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
From Terms to High-Dimensional Word Vectors: Word2Vec . . . . . . . . . . . . 601
21.5 Implementing Machine Learning Methods . . . . . . . . . . . . . . . . . . . . 602
21.6 Example: Online Discussions on Autos and Electronics . . . . . . . . . . . . . . 602
Importing the Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Data Preparation and Labeling the Records . . . . . . . . . . . . . . . . . . . . 603
Text Preprocessing in RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . 605
Producing a Concept Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Fitting a Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
21.7 Example: Sentiment Analysis of Movie Reviews . . . . . . . . . . . . . . . . . . 607
Data Loading, Preparation, and Partitioning . . . . . . . . . . . . . . . . . . . 607
Generating and Applying Word2vec Model . . . . . . . . . . . . . . . . . . . . 609
Fitting a Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Using a Pretrained Word2vec Model . . . . . . . . . . . . . . . . . . . . . . . 611
21.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
CHAPTER 22 Responsible Data Science 617
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Example: Predicting Recidivism . . . . . . . . . . . . . . . . . . . . . . . . . 618
22.2 Unintentional Harm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
22.3 Legal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
The General Data Protection Regulation (GDPR) . . . . . . . . . . . . . . . . . 620
Protected Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
22.4 Principles of Responsible Data Science . . . . . . . . . . . . . . . . . . . . . . 621
Non-maleficence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Accountability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
Data Privacy and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
22.5 A Responsible Data Science Framework . . . . . . . . . . . . . . . . . . . . . . 624
Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
22.6 Documentation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
xviii CONTENTS
Impact Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Model Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Datasheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
Audit Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
22.7 Example: Applying the RDS Framework to the COMPAS Example . . . . . . . . . . 631
Unanticipated Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
Ethical Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
Protected Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
Data Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Fitting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Auditing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
Bias Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
22.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
PART IX CASES
CHAPTER 23 Cases 647
23.1 Charles Book Club . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
The Book Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Database Marketing at Charles . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 650
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
23.2 German Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
23.3 Tayko Software Cataloger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
The Mailing Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
23.4 Political Persuasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
Predictive Analytics Arrives in US Politics . . . . . . . . . . . . . . . . . . . . 662
Political Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
23.5 Taxi Cancellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Business Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
23.6 Segmenting Consumers of Bath Soap . . . . . . . . . . . . . . . . . . . . . . . 667
Business Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Key Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
CONTENTS xix
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Measuring Brand Loyalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
23.7 Direct-Mail Fundraising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
23.8 Catalog Cross-Selling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
23.9 Time Series Case: Forecasting Public Transportation Demand . . . . . . . . . . . 673
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Assignment Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Tips and Suggested Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
23.10 Loan Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
References 679
Data Files Used in the Book 683
Index 685
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.