Topological Degree Theory and Applications

, by ;
Topological Degree Theory and Applications by Yeol Je Cho; Yu-Qing Chen, 9781420011487
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
  • ISBN: 9781420011487 | 1420011480
  • Cover: Nonspecific Binding
  • Copyright: 3/27/2006

  • Rent

    (Recommended)

    $110.09
     
    Term
    Due
    Price
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.
  • Buy New

    Usually Ships in 3-5 Business Days

    $148.35
  • eBook

    eTextBook from VitalSource Icon

    Available Instantly

    Online: 180 Days

    Downloadable: 180 Days

    $56.10
Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its applications. The authors begin by introducing the Brouwer degree theory in Rn, then consider the Leray-Schauder degree for compact mappings in normed spaces. Next, they explore the degree theory for condensing mappings, including applications to ODEs in Banach spaces. This is followed by a study of degree theory for A-proper mappings and its applications to semilinear operator equations with Fredholm mappings and periodic boundary value problems. The focus then turns to construction of Mawhin's coincidence degree for L-compact mappings, followed by a presentation of a degree theory for mappings of class (S+) and its perturbations with other monotone-type mappings. The final chapter studies the fixed point index theory in a cone of a Banach space and presents a notable new fixed point index for countably condensing maps. Examples and exercises complement each chapter. With its blend of old and new techniques, Topological Degree Theory and Applications forms an outstanding text for self-study or special topics courses and a valuable reference for anyone working in differential equations, analysis, or topology.
Loading Icon

Please wait while the item is added to your bag...
Continue Shopping Button
Checkout Button
Loading Icon
Continue Shopping Button